G C S E PHYSICS FORMULA LIST

FROM JUNE 2003

Foundation & Higher Tier Formula:

potential difference = current × resis tan ce	V = IR

$$power = potential \ difference \times current$$
 $P = VI$

$$energy transferred = power \times time$$
 $E = Pt$

 $total \cos t = number \ of \ Units \times \cos t \ per \ Unit$

$$acceleration = \frac{change \ in \ velocity}{time \ taken \ for \ change} \qquad \qquad a = \frac{v - u}{t}$$

moment = force × perpendicular distance of force from the pivot

$$momentum = mass \times velocity$$
 $p = mv$

wave speed = frequency × wavelength
$$v = f\lambda$$

$$efficiency = \frac{useful\ energy\ transferred}{total\ energy\ input}$$

work done = energy transferred

$$work\ done = force \times dis tan ce\ moved\ in$$
 $W = Fs$ $direction\ of\ force$

$$power = \frac{work \ done}{time \ taken}$$
 $P = \frac{W}{t}$

$$weight = mass \times gravitational field strength$$
 $W = mg$

change in gravitational = weight × change in vertical
$$\Delta P_e = mg\Delta h$$
 potential energy height

$$kinetic\ energy = \frac{1}{2} \times mass \times velocity^{2}$$
 $K_{e} = \frac{1}{2}mv^{2}$

Higher Tier Formula:

energy transferred = potential difference
$$\times$$
 charge $E = VQ$

$$ch \arg e = current \times time$$
 $Q = It$

$$force = mass \times acceleration$$
 $F = ma$

$$force = \frac{change \ in \ momentum}{time}$$

$$F = \frac{P_1 - P_2}{t}$$

$$\frac{voltage\ across\ primary}{voltage\ across\ sec\ ondary} = \frac{number\ of\ turns\ on\ the\ primary}{number\ of\ turns\ on\ the\ sec\ ondary} \quad \frac{V_p}{V_s} = \frac{N_p}{N_s}$$

Candidates are also expected to be able to use but not remember the following potential divider equation:

$$V_{out} = V_{in} \times \frac{R_2}{R_1 + R_2}$$